
GSA Search Engine Ranker
Script Manual

© GSA 2013 - www.gsa-online.de

The program is all based on a simple script engine that we
developed on our own which could theoretically be used to submit
anything to any platform you can think of. Though it might be a
bit hard to figure out the meaning behind the values. This
document tries to explain everything in an hopefully easy way.

The Structure..2
The SETUP Section..3
The STEP Section...7
Variables usable in SETUP and STEP Section...12
How form fields are filled..15
Data Extraction...21
A small Example...22

http://www.gsa-online.de/

The Structure

Each engine is defined by a simple ini file that has to be placed
in the “Engines” folder located in the programs installation
folder.

To those of you who do not know what a ini file is let me explain
it shortly. A ini file is a simple text file that you can open in
a text editor like Notepad. It has a section, a variable and a
value.

[SECTION]

variable=content

Everything is not case sensitive so you don't have to care if you
write “[SECTION]” or “[Section]”. There are basically two types of
engines.

a) The once that require an account and login.

You will have to define at least the following sections:

[SETUP], [REGISTER_STEP*], [LOGIN_STEP*], [STEP*]

b) Those who need no account and no login.

You just need the following sections:

[SETUP], [STEP*]

The SETUP Section

This section defines global settings used to identify a website or
set a description. The possible values are described below:

Variable Allowed values / Description

enabled 1 = Engine is usable from GUI (default)
0 = Engine is not usable from GUI

default checked 1 = When a new project is created, this engine
 will be enabled (default)
0 = This engine is not checked on a new project

engine type Name the type of the engine e.g. Directory,
Forum, Blog Comment,...
This will be used to sort it into the tree view
when you edit or create a project.
Example: engine type=My Engines

description Just write some notes about this engine that get
shown when the user moves the mouse over the
engine name in the tree view. You can use \n to
generate a line feed.
Example: description=My little Engine\n\n(c) GSA
Supported\n\nHave fun

dofollow 1 = This engine creates a do follow link
0 = This engine creates a no follow link
2 = This engines produces both, no follow and do
 follow links.

anchor text 1 = This engine creates links with your anchor
 text
0 = This engine creates links with there own
 anchor texts like “Homepage” or “Visit XYZ's
 Site”.
2 = This engine might create both, anchor text
 links and links with there own anchor text.

uses pages 1 = This engine uses pages
0 = This engine uses no pages
2 = This engine uses might use pages or not.

For some engines the link will move to page 2 or
beyond and might not be visible if you visit that
page later. The link is still there but on a
different page. This is just an informational
data and not used in any way right now.

page must have This parameter is used to check whenever the
webpage is usable for this engine or not. The
content of this variable has to be present in the
webpage (either pure text or html source). The
variable can have multiple values separated by a

| where just one has to match.

Example:
page must have1=Powered by XYZ|XYZ Powered
page must have2=!not allowed to access this page
page must have3=Webpage|Homepage

In the above example you see 3 variables and each
of them has to match before a engine is used for
that website. The ! parameter in “page must
have2” means that the following should not appear
on the page.

url must have This parameter is used the same way as “page must
have” but for the URL string itself and not for
the website content.

Example: url must have1=/wiki/
 url must have2=!wikipedia.com

In the above example we will not use this engine
for URLs that contain wikipedia.com or do not
have “/wiki/” in there URL.

fixed url If no “search term” is used, you have to use this
tag to indicate that the submission is just
happening on one fixed site (usualy some kind of
web 2.0 site with blog creation).

Example: fixed url=https://my.opera.com

This is than adding the URL to the target URLs of
the project and starts a submission to it.

search term This is used to search for new targets on the
internet with the help of search engines like
google.

Example:
search term=”Powered by XYZ”|”Powered by XYZ”

The example above uses two possible search
queries. You can use also encoded the search term
already if you want with “%90%AF%24”. This is
useful for queries in some strange language. The
program will pick one of the queries randomly so
the order is not important.

add keyword to
search

1 = Add a keyword from the project to the search
 query
0 = Never add a keyword to the search query
2 = Add just sometimes a keyword to it if it
 seems to be useful (default)

use blog search 0 = Never use blog search engines
1 = Use blog search engines (default)

https://my.opera.com/

2 = Use only blog search engines

extract
keywords

1 = Extract keywords from the sites meta tags.
 These can be used later on
0 = Don't extract keywords (default)

extract
keywords ignore

Ignores the keywords and will not add them.

Example: extract keywords ignore=blog,wordpress

If the meta keywords for that site are “SEO,
blog, wordpress” then the program will just
extract SEO from it.

posted domain
check

Overwrites project settings: Avoid posting URL on
same domain twice
0 = do not post any link if anything has been
 posted before
1 = allow to post a link again on the same domain
 (but only if the URL is different)
2 = special setting for tier projects that would
 than allow to post several URLs on the same
 site.

skip ext links
on

Overwrites project settings: Skip sites with more
than
1 = setting from project is applied
0 = setting from project is ignored

skip content on Overwrites project settings: Skip sites where the
following words appear
1 = setting from project is applied
0 = setting from project is ignored

skip url
content on

Overwrites project settings: Skip sites with the
following words in URL/Domain
1 = setting from project is applied
0 = setting from project is ignored

skip nofollow
links on

Overwrites project settings: Try to skip creating
Nofollow links
1 = setting from project is applied
0 = setting from project is ignored

skip pr on Overwrites project settings: Skip sites with a PR
below
1 = setting from project is applied
0 = setting from project is ignored

referrer Sets a fixed referrer that is used when
downloading content or submitting something to
this site.

Example: referrer=%url%

This will always use your URL from the project as
a referrer.

user agent Instead of using a user agent that the program

chooses for you, you can define it here.

Example: user agent=Some Legit Browser v1.01

This might be useful for exploits where you e.g.
can send a html link in the “user agent” that is
than turned to a real link on a page.

extract from
email

If you use email verification in the engine you
might need to extract not only verification URLs,
but also variables like a login or password from
the emails. This can be done here.

Example:
extract from email=key,forum_password=email_pw

This example will try to extract the data for key
(section key) and forum_password (defined in
email_pw section). Please read the chapter Data
Extraction for details.

whois only Very special variable that is only used for
engines that submit your URL to sites that carry
your domain in there URL.
0 = Not a whois only engine (default)
1 = Only whois submission and if not detected as
 a whois one, skip submission

The STEP Section

There are 3 types that can be used:

a) [REGISTER_STEP*] used to create an account

b) [LOGIN_STEP*] used to log into the site with the created
account

c) [STEP*] he actual submission process

You can define as many steps as you want but they have to be in
sequence like [STEP1] [STEP2] and so on.

The following fixed variables can be used:

Variable Allowed values / Description

find link Searches the site for a anchor text and downloads
that URL to work on with. You can use more than
one link text when separated with |.

Example:
find link=Register|Registrieren|Sign up|Signup

The example will search for a link that has at
least one of the above anchor texts.

find url Searches the site for a URL that is matching one
of the masks defined in the variable.

Example:
find url=*/register|*/register.php|*/signup/*

You should always use find link and find url in
combination so that if one fails the other is
used.

optional find
url link

0 = A link has to be found else we abort the
submission (default)
1 = If no link is found we continue to find a
form or whatever should be done in the current
submission step.

Example: optional find url link=0

alternative url If find url and find link are not finding any URL
that can be used, we will generate an alternative
URL.

Example: alternative url=./register.php

browse links This will take the variable content and browse to
the site. It is just useful for directories maybe
where you first have to browse to a certain
category till you are allowed to start a
submission.

Example: browse links=%category%

If your project category is defined like
“Computer :: Software :: Shareware”, than the
program tries to surf to Computers followed by
finding a link names Software and than Shareware.

browse links
from root

1 = The root URL is used for “browse links” in
 case the start URL is a sublink.
0 = Start the “browse links” from where we are.

browse links
url mask

Tells the program to just search for URLs
matching that mask.

just download 1 = Download the new URL and continue with STEP2
 or finish the submission if nothing else
 should be done.
0 = a form has to be found to start the
 submission (default)

form id Try to find a form on the current webpage that
has a ID as in the variable content. Again you
can use | to have multiple variations. Not many
sites use a ID in the <form> tag but some do.

Example: form id=signupform|signup

This tries to find a from with the ID called
signupform or singup.

form name Try to find a form on the current webpage that
has a name like the variable content. If no name
is used in the <form> tag, the caption of the
submit button is used.

Example: form name=*Sign Up|*Register

This tries to find a form there the name or the
submit button's name is either matching “*Sign
Up” or “*Register”.

form url Try to find a form where the submission URL would
match the variable content.

Example: form url=*/signup.php|*/signup/

This tries to find a form where the resulting

submission URL after pressing the submit button
would match “*/signup.php” or “*/signup/”.

form request
with

Some Forms get sent by ajax or some other
javascript framework and would than need to send
a “X-Requested-With” in the html header. By
default nothing is sent by in the HTML header.

Example: form request with=XMLHttpRequest

optional form 0 = If no form is found we will stop the
 submission with a failer (default)
1 = the submission process is going on (STEP2
 Section e.g.) even if no form has been found.

seconds to wait
before
submission

Will wait a given number of seconds before the
form is actually submitted. This is useful to not
trigger some robot detection system for some
engines.

Example: seconds to wait before submission=12

Wait 12 seconds before the form is submitted.

seconds to wait
before
submission
condition

This will only delay the submission if something
in the variable content is found on the webpage.

Example: seconds to wait before submission
condition=stop_spam_time

If the word “stop_spam_time” is either present in
the html source or the visible text we wait with
the submission a given time, else we skip this.

post data This is hardly used but will create a custom data
that is used to submit to websites instead of
using the data from <form>.

Example: post data=this=that&something=else

Have a look in the Pingback or Trackback engine
where this is used.

encode post
data

0 = encode the data in a proper way as used in
 POST protocol (default)
1 = take the data as it is without encoding
 anything

variable must
be used

A form is only submitted if certain variables
have been used in that form.

Example: variable must be used=url,login|email

The above example requires a form to use the
variable “url” or “login” and “email”.

add fixed data

add fixed data
condition

remove fixed
data

remove fixed
data condition

This will add a form field if the thing in “add
fixed data condition” is found on the webpage.
This works only if both variables are defined.
Don't worry about this to much as you will
probably never use this. It is only required if
some sites add data to forms by javascript to
prevent automated submissions. You can use
“remove fixed data” to just remove that from the
posting.

Example:
add fixed data=code=%captcha%;hidden=0
add fixed data condition=code_sign;hidden_data

If the webpage has anywhere the word “code_sign”
in it we add a new form field called code that
will be filled with a captcha. And if the word
“hidden_data” is found we also add a new form
field called “hidden” with the content “0”.

set unknown
variable

set unknown
variable
condition

If a form field is unknown as we didn't define
how to fill it in our engine, we could still fill
it by something you define here. The submission
aborts if this is not defined and something is
unable to get filled. The “set unknown variable
condition” doesn't have to be used but if it is,
the string on that variable must be present to
use this.

Example: set unknown variable=%question%

If a filed is found called
“blahantispam193802378” we can still define how
to fill this and it gets filled by the value
%question% which is handled by a popup asking you
how to fill it. Also often used it “set unknown
variable=%leave%” which will simply leave the
value as it is.

match by option
label

1 = A form with a select or radio field is filled
 by checking the variable content against the
 option labels (the one you see on the
 browser).
0 = We will not check for a matching label

Example: match by option label=1

match by option
value

1 = A form with a select or radio field is filled
 by checking the variable content against the
 option value (hidden from the users eye in
 browser)
0 = We will not check for a matching value

match by
prefill

1 = If the user has filled this field before in
 the past we use that vontent to fill it
 (default)
0 = we do not check past submissions on what has
been used here.

modify submit
url

modify submit
url condition

Sometimes a javascript is modifying the actual
submission URL of a form which is not recognised
by default. In this case you can do this with the
variables. “modify submit url condition” deosn't
have to be present.

Example:
modify submit url=./submit.php?changed=1
modify submit url condition=javascript:modify_url

The form URL is changed to “./submit.php?
changed=1” if the string “javascript:modify_url”
is found on the webpage.

remove cookie

remove cookie
condition

Removes a cookie manually for the given
URL/domain

Example: remove cookies=%targeturl%

This removes any cookie for this domain

set cookie

set cookie
condition

Sometimes cookies are required to submit a form
and they are set by javascript so that the
program can not detect them. You can do that
manually with these variables. “set cookie
condition” doesn't have to be present.

Example: set cookie=passed_check=1

This sets a cookie named “passed_check” with the
value “1”.

javascript::modify_url
javascript::modify_url

Variables usable in SETUP and STEP Section
Some variables can be used globally (SETUP) or in the STEP (some
only on STEP1) section. not

submit success

submit failed

captcha failed

At the end of each STEP* the resulting webpage
content is checked first against “submit success”
and than against “submit failed”. And if one is
matching the submission is either set as
successful or failed. The text is not case
sensitive and multiple items can be added with |.

Example: submit failed=<div id='errorbox'>
 submit success=submitted successfully
 captcha failed=wrong code|letters wrong

If the text “submitted successfully” appears on
the webpage (source or visible text) then the
submission is taken as successful. If the text
“<div id='errorbox'>” is found then the
submission is aborted.

submit success
skip verify

If a submission is detected as successful and it
is e.g. a REGISTER_STEP* then we can skip the
verification process if certain stings appear on
the page.

Example: submit success skip verify=>Logout<|>Log
Out<

After a successful registration we would normally
wait till an verification email arrives to
continue with login and submission. However some
platforms might allow you to login without this
or log you in already. In that case it would be a
waste of time to wait for a email from them so we
continue to login and submit the content.

verify on
unknown status

1 = if a submission is not detected as successful
 or failed it will still be taken as
 successful (appearing in log with “unknown
 submission status”)
0 = we assume the submission failed (default)

verify
submission

1 = verify the submission
0 = do not verify the submission but assume that
 the link is submitted and will be visible
 there or is already (default) Even though
 this is the default behaviour, you should set
 it to “1” as used in most engines.
2 = this submission step is not creating a link
 but is used for something else.
Example: verify submission=1

After a successful submission the URL is put to
the verification list and checked in intervals if
the link appears there.

verify by

verify search
for

Defines how to verify a submission. Possible
value for “verify by”:

search = try to locate the search form on the
 page and submit a search using “verify
 search for”
url = downloads the URL in “verify url” and
 checks for the present of “verify search
 for” which is by default your URL
txturl = same as “url” but checks also if the
 link is appearing just as a text (no
 html link code).
email = logs into your email account and tries
 to find a link that is coming from the
 same webpage domain.
extractemail = just parses for data in emails

without downloading any URL. This
might be important for
verification URLs that are used
later on in scripts.

Example:
verify by=email+search,url
verify search for=%website_title%,%url%

This will do actually two verifications
(separated by ,). First it tires to log into your
email account and checks for links and also
checks on the webpage itself using the search
form and searching for “Website title”. Once
found by one of the methods it will use that
resulting URL to check for your URL.

verify url

verify url
remove

verify url
replace

If you use “search”, “url” or “txturl” in the
variable “verify by” and you don't want to check
on the last used URL then you can define a
different URL here.

Example:
verify url=./index.php
verify url replace=/edit/;/show/
verify url remove=sub/

Imagine the last URL was:
“http://www.something.com/ sub/edit/?a=2 ”
It would now be
“http://www.something.com/show/index.php”

http://www.something.com/show/index.php
http://www.something.com/sub/edit/?a=2
http://www.something.com/sub/edit/?a=2

use original
url to verify

1 = this will not use the last URL but the URL we
 started the whole engine with.
0 = use the last URL at the end of the submission
 (default)

Example: use original url to verify=1

verify interval Defines in what interval in minutes this
verification should take place (default 180).

Example: verify interval=60

This checks each hour if the submission is
verified.

verify timeout Defines how long we wait in minutes till we
assume that a submission will never be successful
and skip the whole site (default 7200).

Example: verify timeout=180

Waits 3 hours for a successful verification
before giving up.

first verify The first verification would start 10 minutes
after the submission unless you define it
differently.

Example: first verify=60

This means to check one hour after the
submission.

verify search
detail url

1 = If a URL has been located with your wanted
data (URL) on it then the verification would
normally be finished. Though sometimes you end up
with a link not as good as it can be. This is
especially the case if you use “search” in
“verify by”. In this case a better URL is located
by seeing if a DETAIL or MORE or alike link is
showing your URL as well. This is by default
enabled. Set it to 0 if you think the resulting
URL is the best it can find.

Example: verify search detail url=1

try to continue
without
verification

0 = follow exact verification steps (default)
1 = try to skip verification and continue

Examble: try to continue without verification=1

When used in a REGISTER_STEP1 section, this would

skip e.g. the email verification and try to login
and submit your link. In case this goes wrong
there is still the normal way to go on (wait
verification + login + submit).

modify url This is used to change a found URL to something
else.

Example: modify url=%targethost%%targetpath%

If the program starts the submission with a URL
like “http://www.something.com/guestbook.php ?
page=23” you will most likely not find a form to
submit your link as this is only on page 1. So in
this case the “modify url” removes all parameters
from the URL and you end in
“http://www.something.com/guestbook.php”.

modify url
remove

The same as “verify url remove” but used to
modify a URL for the submission.

modify url
replace

The same as “verify url replace” but used to
modify a URL for the submission.

Download
retries

Number of tries to submit or download something
(default is 1).

Link type Defines the type of backlink created. Can be
anything you want but you might want to use the
types already used in other scripts.

How form fields are filled

First you would have to get all form field names from a form you
want to submit to when looking in the html source like...

<form action=”submit.php”>

<input name=”homepage” id=”hp” type=”text”>

<textarea name=”comment” id=”cmd”></textarea>

<input name=”a1” type=”hidden” value=”0”>

<input name=”button” value=”Submit” type=”submit”>

</form>

On the example above you would take just “homepage” and “comment”
as the rest is either hidden or a button that is not possible to

http://www.something.com/guestbook.php/page=23
http://www.something.com/guestbook.php/page=23
http://www.something.com/guestbook.php/page=23
http://www.something.com/guestbook.php/page=23

fill out.

homepage=%url%

comment=%blog_comment%

As you can see we fill the form field “homepage” with the content
of the variable “url” and the field “comment” with the variable
“blog_comment”. Of course the program still needs to know what URL
or Blog_Comment is so we have to make that visible for the
customer to fill it out when editing a project. And this would
look like the following:

[Blog_Comment]

type=memo

allow html=You can use these tags:|

allow return=1

must be filled=1

hint=Use some comments here that will be posted to the blogs.

default=%file-comments.dat%

html to bbs=BBCode format allowed

custom mode=1

auto modify=1

auto add anchor url=1

html to markdown=Markdown</option>

The list below explains all possible variables you can use here.

Variable Allowed values / Description

type Can be one of the following
memo multiple line
text simple edit box (default)
email simple edit box but should have a
 valid email syntax

url simple edit box but should have a
 valid url syntax
category a category to fill out
file the customer has to choose a file.
login a login field
password a password field
extract a special field not visible when
 editing but used to extract
 data from emails or webpages.

allow html 0 = No html allowed
1 = html is allowed
<text> = If the text appears on the webpage we
will allow html.

HTML will be removed from your defined content
if not supported by the engine (transformed into
text only).

allow return 0 = no return/line feed allowed
1 = return/line feed is allowed
<text> = If the text appears on the webpage we
will allow a return/line feed.

must be filled 1 = User must fill this out in project data
0 = User can leave this empty (default)

hint A text that is displayed when the user moves his
mouse over the field.

default The default value that is used when creating a
new project. You can also use “%file-FILENAME%
here in case you want to load the default
content from a file.

html to bbs

bbs supports

0 = No conversion (default)
1 = Convert html code to BB code.
<text> = Convert to BB Code only if the text is
 appearing on the webpage.

Example: html to bbs=1
 bbs supports=url,b,i,u

The variable “bbs supports” defines what this
engine can convert. Usually “url” (default).

Please note the spelling as it is “html to bbs”
and not “html to bb” as it should have been
called.

custom mode 1 = User is not asked to manually customize this
 data before submission (when custom mode is
 on)
0 = No customization (default)

auto modify 1 = Modify the content a bit with random line
 feeds and other things to make it a bit more

 unique (not duplicate content).
0 = Do not modify this at all
2 = Modify only line breaks after full sentences

auto add anchor
url

auto add anchor
url content

1 = Add a link to the end of the post in case
 the site supports html and no URL could get
 posted anywhere else.
0 = Do not add a url at all.

Example:
auto add anchor url=1
auto add anchor url content=Click <a href=”%url
%”>%anchor%

The program is trying to locate the anchor in
the text if there is no URL used in the form. If
found it will place a link there, else it will
add the line from the “...content” variable and
put your link there at the end. The program will
use it's internal variations if you leave the
“...content” variable empty.

html to markdown 1 = Convert html code to markdown code
0 = Do not convert it
<text> = Convert it if the text is appearing on
the website.

html to custom
link format

custom link
format

1 = convert html code to a custom format
0 = Do not convert it.
<text> = Convert it if the text is appearing on
the website.

Example:
html to custom link format=1
custom link format=[%url% %anchor_text%]

This would be used for Wiki engines where a link
is encoded in a special way.

html line break

html line break
format

Converts a normal line break to some html line
break (default
). You can specify the line
break format in “html line break format” if it
is some special line break as seen in some wiki
engines.

Example:
html line break=1
html line break format=<
>

alternate data Right now only used for anchor_text which will
use something else than the entered data
according to its value

Example:
alternate data={click here|my page|webpage}

This will not use the anchor text that the user
entered but something else randomly.

static 1 = marks this as an important variable that
 should be saved as it might have to be used
 later on.
0 = do not save the content.
2 = saves it till next submission process is
successful (e.g. for first time verifications it
has to be removed later to allow further
submissions)

This is important for logins and passwords as
the content could be random but we still need to
know the login data for later login after a
verified registration.

max length The maximum length of the resulting data.

min length The minimum length of the resulting data.

alpha Used when the type is a login.
0 = no alpha (A-Z) chars allowed
1 = alpha chars allowed (default)

numeric Used when the type is a login.
0 = no numbers allowed
1 = numbers allowed (default)

upcase Used when the type is a login.
0 = capital chars are not allowed
1 = capital chars are allowed (default)

lowcase Used when the type is a login.
0 = lowercase chars are not allowed
1 = lowercase chars are allowed (default)

capitalize words 0 = no modification
1 = Will Capitalize Each Word

remove Remove certain content before we apply it to the
form field. See “verify url remove” for syntax.

replace Replace certain content before we apply it to
the form field. See “verify url replace” for
syntax.

allow spin 1 = User can use spin syntax in project editor
 (default)
0 = User is not allowed to use spin syntax

tier data Sets the data that will overwrite the input data
for tier projects. Just if the “tier data” is
empty it will use the one that the user set.

Example: tier data=%tier_title%

If the project is a tier project, it will not
use the input data, but instead fill it from the

variable %tier_data% which can e.g. be a
extract-variable that downloads the URL and
extracts the <title></title> value.

Of course some form fields doesn't need to get filled by a
previously defined content from the user in project options. These
are e.g. captcha forms or check boxes with someone has to agree to
there terms. Just add the content without using variable content
like this:

agree_tos=1

1 = check the box, 0 = don't check

captcha_code=%captcha%

%captcha% indicates that this is a field with a captcha image

 to fill out

text_question=%question%

%question% indicates that this is a random question that the

user has to answer.

cap_text=%capquest%

%capquest% can be both (captcha or question)

country_box=%random_option%

Choose a random item out of a selection box.

signature={Some|A} {spin|spun} text

Just fill that field with the text after spinning it.

letters=%textcode% <front>;<back>

tries to fill the field by locating the data between <front>

and <back>

something_else=%leave%

Leaves this field to it's default content/check state.

If a form field variable is not found in the current section (e.g.
[STEP2]) then it is checked from [STEP1] section.

If the name=”xyz” is not matching, we try to match by id=”xyz”. In
the above example you could also define:

[STEP1]

hp=%url%

Data Extraction

Sometimes you need to extract certain content from the website or
the email like a login/password. This can be done by defining a
new variable type as the following

[email_pw]

type=extract

front1=Your password is:|Ihr passwort lautet:

back=\n

The “type=extract” tells the program to extract data from the
email or webpage and not ask the user to fill it in project data
when editing a project.

The variable “front1” shows what should be before the things we
want to extract and “back” (yes you guessed it) the thing it
should cut off the extracted data. You can again add multiple
items with | and if you have more than one “front1” you can also
add “front2=”, “fornt3=” and so on. Same for “back”.

Variable Allowed values / Description

front or front1,
front2...

Defines the content to cut in front of our to
extract data. Separate multiple variations by
|.

back or back1,
back2,..

Defines the content to cut in the back of our to
extract data. Separate multiple variations by
|.

remove html 0 = Do not modify it
1 = remove html code

must have If the extracted data has not the something
appearing in “must have” we set it blank again.

increase If the extracted data is a integer we can
increase or decrease (negative number) the data
by the given value.

default If we have been unable to extract something, we
can set a default value here.

url Instead of using the current URL for extracting
something, we extract the content from the given
URL.

search url Instead of using the current URL for extracting
something, we search for an URL by the given
mask and if found use that URL's content to
extract data from.

find link
find url

Instead of using front/back we extract URLs by
the given parameters.

name_front /
name_back
value_front /
value_back

Instead of using front/back we extract actually
two values here and later join them with
“name=value”. This is useful for cookie
extraction.

A small Example
In that example the search engine would try to find a new target
with the search “Powered by XYZ” or “XYZ Powered”. If the found
site also has one of the strings on its page we use this engine
and start to submit the data right away as no “REGISTER_STEP1” or
“LOGIN_STEP1” is defined.

We first start to locate the correct sublink by searching for a
link named “Submit your Site” and/or the URL containing
“/submit.php” in it.

On that URL we search for a from that has an ID named
“Submitform”, has a name “*Submit” and/or has a URL which matches
a mask “*/submit.php?step=2”. Once found we start to extract all
form fields and start to fill them.

We find “name” and fill it with a random name from the file
“names.dat”.

We find a form field called “captcha_image” and ask the user to
fill that out.

We find the field called “url” and fill it with our URL defined in
the project settings.

Now we submit the form and check if the submission is either
successful (submit success) or not (submit failed).

If it was successful we will add the URL (modified to /latest.php)
to our sites for later verification. There we will always download
the website and check if our URL is appearing on it. If so we have
a verified submission.

[SETUP]

engine type=TEST

description=Just a sample

page must have=Powered by XYZ|XYZ Powered

search term=”Powered by XYZ”|”XYZ Powered”

add keyword to search=0

extract keywords=0

[URL]

type=url

hint=Enter your URL here please

must be filled=1

[STEP1]

find link=Submit your Site

find url=*/submit.php

form name=*Submit

form id=submitform

form url=*/submit.php?step=2

submit success=Your submission was successful

submit failed=Your submission failed

verify submission=1

verify by=url

verify url=./latest.php

verify search for=%url%

verify on unknown status=1

name=%spinfile-names.dat%

url=%url%

captcha_image=%captcha%

© GSA 2013 http://www.gsa-online.de/

http://www.gsa-online.de/

	The Structure
	The SETUP Section
	The STEP Section
	Variables usable in SETUP and STEP Section
	How form fields are filled
	Data Extraction
	A small Example

